Monatshefte für Chemie 117, 1099-1106 (1986)

PbCu₃(OH)(NO₃)(SeO₃)₃ \cdot $\frac{1}{2}$ H₂O und Pb₂Cu₃O₂(NO₃)₂(SeO₃)₂: Synthese und Kristallstrukturuntersuchung

Herta Effenberger

Institut für Mineralogie und Kristallographie, Universität Wien, A-1010 Wien, Österreich

(Eingegangen 28. Juni 1985. Angenommen 29. Oktober 1985)

PbCu₃(OH)(NO₃)(SeO₃)₃· ¹/₂H₂O and Pb₂Cu₃O₂(NO₃)₂(SeO₃)₂: Synthesis and Crystal Structure

Crystals of PbCu₃(OH)(NO₃)(SeO₃)₃· $\frac{1}{2}$ H₂O [a = 7.761 (3) Å, b = 9.478 (4) Å, c = 9.514 (4) Å, $\alpha = 66.94$ (2)°, $\beta = 69.83$ (2)°, $\gamma = 81.83$ (2)°, space group P I, Z = 2] and Pb₂Cu₃O₂(NO₃)₂(SeO₃)₂ [a = 5.884 (2) Å, b = 12.186 (3) Å, c = 19.371 (4) Å, space group Cmc2₁, Z = 4] were synthesized under hydrothermal conditions. Their crystal structures were refined with three-dimensional X-ray data to $R_w = 0.033$ resp. 0.055. In PbCu₃(OH)(NO₃)(SeO₃)₃· $\frac{1}{2}$ H₂O the Cu atoms are [4 + 1] and [4 + 2] coordinated and via SeO₃ groups a three-dimensional atomic arrangement is built up. In Pb₂Cu₃O₂(NO₃)₂(SeO₃)₂ there are ${}^{2}_{0}$ [Pb₂Cu^[4]₃O₂(SeO₃)₂] sheets, which are connected only via Pb—O bonds ranging from 2.98 Å to 3.16 Å.

[*Keywords*: $PbCu_3(OH)(NO_3)(SeO_3)_3 \cdot \frac{1}{2}H_2O$; $Pb_2Cu_3O_2(NO_3)_2(SeO_3)_2$; *Crystal structure*; *Crystal chemistry*]

Einleitung

Bei der Synthese von Pb(II)—Cu(II)-Seleniten in oxidierendem Milieu gelang die Darstellung zweier neuer kristalliner Phasen. Ihre chemische Zusammensetzung wurde durch Kombination von Elektronenstrahl-Mikrosondenuntersuchungen in Verbindung mit Kristallstrukturuntersuchungen gefunden.

Experimentelles und Strukturuntersuchung

Für die Untersuchung im System PbO-CuO-SeO₂-H₂O bei Anwesenheit von Nitrationen (oxidierendes Milieu) wurden mit "Teflon" ausgekleidete

Stahlautoklaven mit einem Reaktionsraum von $\sim 6 \,\mathrm{cm^3}$ verwendet. Jeweils 2 g eines äquimolaren Gemenges bestehend aus $Pb_3O_4/Pb(NO_3)_2 +$ $CuO/Cu(OH)_2/Cu(NO_3)_2 \cdot 3H_2O + SeO_2 \pm HNO_3$ wurden eingesetzt, mit H₂O auf 80% gefüllt und die verschlossenen Autoklaven bei Temperaturen zwischen 423 (10) K und 503 (10) K 48 Stunden erhitzt. Nach einer Abkühlzeit von etwa 12 Stunden konnte das Auftreten folgender Reaktionsprodukte in Kristallen mit einer Korngröße bis zu wenigen Zehntel mm beobachtet werden (z. T. neue Phasen): Cu(SeO₃)-II (Raumgruppe Pcab), Cu₂O(SeO₃)-I und II (Raumgruppen P2₁3 und P2₁/n), Cu₄O(SeO₃)₃-II (Raumgruppe PI), Cu₂(OH)₃(NO₃) (Raumgruppe P 2₁), PbCu₃(OH)(NO₃)(SeO₃)₃ · $\frac{1}{2}H_2O$ und Pb₂Cu₃O₂(NO₃)₂(SeO₃)₂. Die Mengenverhältnisse der einzelnen entstandenen Phasen variieren bei einzelnen Syntheseansätzen relativ stark.

Die Kristalle von PbCu₃(OH)(NO₃)(SeO₃)₃ · $\frac{1}{2}$ H₂O sind hellgrün gefärbt, durchsichtig, etwa isometrisch ausgebildet und sehr flächenreich. Pb₂Cu₃O₂(NO₃)₂(SeO₃)₂ bildet dunkelgrüne, ebenfalls durchsichtige, plättchenförmige Kristalle mit einer ausgezeichneten Spaltbarkeit parallel {001}. Es ist zu bemerken, daß die Kristalle dieser Verbindung praktisch immer starke Fehlordnungen aufweisen. Es treten Verwachsungen der einzelnen Kristallindividuen parallel (001) auf. Erst nach zahlreichen röntgenographischen Voruntersuchungen (*Weissenberg*-Filmmethode) wurde ein für die Strukturuntersuchung hinreichend geeigneter Kristall gefunden.

Formel	$PbCu_{3}(OH)(NO_{3})(SeO_{3})_{3} \cdot \frac{1}{2}H_{2}O$	$Pb_2Cu_3O_2(NO_3)_2(SeO_3)_2$			
aſÅſ	7,761(3)	5.884(2)			
ĥĨÅĨ	9,478 (4)	12,186(3)			
c[Å]	9.514(4)	19.371 (4)			
alol	66.94(2)				
	69.83(2)				
້າ້າ	81.83(2)				
	604.3	1 388.8			
Raumgruppe	$P\overline{1} - C^{1}$	$Cmc_{2_1} - C_{2_2}^{12}$			
Z	$\frac{1}{2}$	4			
$\overline{\mu}$ (MoK) [cm ⁻¹]	273	446			
ρ_{-3} [g cm ⁻³]	4.76	6.85			
Kristallgröße [mm ³]	$0.07 \times 0.09 \times 0.11$	0.12 imes 0.10 imes 0.02			
Strahlung	MoKStrahlung, Graphit-Monoch	romator			
Reflexmessung	$2\theta/\omega$ -scan. Schrittweite 0.03°, $2\theta_{max} = 70^{\circ}$				
Meßzeit	0.5 s bis 1.5 s pro Schritt	A			
Schritte/Reflex	40	50			
Reflexe					
gemessen	9 386	3 628			
symmetrieunabhängige	5 2 4 3	1 687			
$\check{F}_{0} > 3 \sigma (F_{0})$, verfeinert	4 342	1 374			
Variable	203	97			
R	0.042	0.070			
R_w	$0.033 (w = 1/\sigma_F^2)$	$0.055 (w = 1.17/\sigma_F^{2})$			

Tabelle 1. Kristalldaten, Meßbedingungen für die Röntgenbeugungsintensitäten und R-Werte der Strukturverfeinerungen

Die röntgenographischen Messungen erfolgten mit einem Vierkreiseinkristalldiffraktometer AED 2 (STOE & CIE, Darmstadt, Bundesrepublik Deutschland); sämtliche Berechnungen wurden mit dem Programmsystem STRUCSY (STOE & CIE, Darmstadt, Bundesrepublik Deutschland) bzw. SHELX-76 [1] mit einem Rechner ECLIPSE S/140 durchgeführt. Für Details betreffend die Messung sowie für die Gittermetrik vgl. Tab. 1. Die Absorption wurde jeweils entsprechend der Kristallgestalt berücksichtigt; es erfolgten weiters Korrekturen für die *Lorentz*und Polarisationseffekte in der üblichen Weise.

Die Bestimmung der Atompositionen von Pb, Cu und Se gelang für beide Substanzen anhand direkter Methoden. Die Atomkoordinaten für O und N wurden aus *Fourier-* und Differenz*fourier*summationen gefunden. Die Sauerstoffatome wurden generell wie folgt bezeichnet: Sauerstoffatom der OH-Gruppe: O_{h_2} Sauerstoffatom des H₂O-Moleküls: O_{w_2} Sauerstoffatome der NO₃-Gruppe: O_{η_1} ; bei der Numerierung entspricht die erste Stelle der Nummer des Se- bzw. N-Atoms in der jeweiligen SeO₃- bzw. NO₃-Gruppe. Die Streukurven für neutrale Atome

Tabelle 2. Strukturparameter für PbCu₃(OH)(NO₃)(SeO₃)₃ · $\frac{1}{2}$ H₂O und Pb₂Cu₃O₂(NO₃)₂(SeO₃)₂. Standardabweichungen in Einheiten der letzten Stellen

in Klammern. $ATF = \exp\left[-2\pi^2 \sum_{i=1}^{3} \sum_{j=1}^{3} U_{ij}h_ih_ja_i^*a_j^*\right]$

Atom	x/a	y/b	z/c	U _{1 1}	U 2 2	U ₃₃	U ₁₂	U ₁₃	U ₂₃
PbCu ₃ (0H)(NO ₃)(Se	0 ₃) ₃ ,1/2H ₂ 0							
Pb Cu(1) Cu(2) Cu(3) Cu(4) O _h O _n (2) O _n (2) O _n (3) O(12) O(12) O(12) O(12) O(22) O(22) O(22) O(23) Se(3) O(31) O(33) O(23)	$\begin{array}{c} 0,46864(4)\\ 0\\ 0\\ 0\\ 0\\ 0,463(1)\\ 0,4403(1)\\ 0,941(6)\\ 0,8235(9)\\ 0,1964(10)\\ 0,8705(12)\\ 0,1230(1)\\ 0,7675(12)\\ 0,7675(12)\\ 0,7675(12)\\ 0,3026(7)\\ 0,3036(7)\\ 0,3036(7)\\ 0,3036(7)\\ 0,3066(7)\\ 0,3065(6)\\ 0,1535(6)\\$	0,44251(3) 0 1/2 -0,1167(1) 0,0257(1) 0,0507(5) 0,2574(8) 0,2595(8) 0,2296(9) 0,6444(1) 0,3845(5) 0,3845(5) 0,2315(1) 0,2037(5) 0,3647(5) 0,3450(5) 0,1361(5) 0,3450(5) 0,350(5	$\begin{array}{c} 0,23745(3)\\ 0\\ 1/2\\ 0,958(1)\\ 0,5547(1)\\ 0,855(8)\\ 0,4856(8)\\ 0,4856(8)\\ 0,2775(9)\\ 0,1091(1)\\ 0,0370(6)\\ 0,0059(5)\\ 0,7166(6)\\ 0,0059(5)\\ 0,7166(6)\\ 0,0059(1)\\ 0,2571(6)\\ 0,0059(1)\\ 0,2511(6)\\ 0,0059(1)\\ 0,2511(6)\\ 0,0059(1)\\ 0,2511(6)\\ 0,0059(1)\\ 0,2511(6)\\ 0,0059(1)\\ 0,2511(6)\\ 0,0059(1)\\ 0,2511(6)\\ 0,0059(1)\\ 0,2511(6)\\ 0,0059(1)\\ 0,1050(1$	0,0205(1) 0,0109(4) 0,0208(5) 0,0114(3) 0,015(2) 0,025(4) 0,025(4) 0,026(3) 0,025(4) 0,025(4) 0,015(2) 0,015(2) 0,015(2) 0,0122(2) 0,0112(2) 0,0112(2) 0,011(2) 0,012	$\begin{array}{c} 0,0212(1)\\ 0,0132(4)\\ 0,0179(5)\\ 0,0179(5)\\ 0,0148(3)\\ 0,025(2)\\ 0,035(4)\\ 0,055(4)\\ 0,055(4)\\ 0,055(4)\\ 0,055(4)\\ 0,0128(2)\\ 0,014(2)\\ 0,014(2)\\ 0,014(2)\\ 0,014(2)\\ 0,014(2)\\ 0,014(2)\\ 0,014(2)\\ 0,014(2)\\ 0,014(2)\\ 0,014(2)\\ 0,014(2)\\ 0,014(2)\\ 0,014(2)\\ 0,014(2)\\ 0,014(2)\\ 0,014(2)\\ 0,014(2)\\ 0,014(2)\\ 0,017(2)\\ 0,0$	$\begin{array}{c} 0,0215(1)\\ 0,0113(5)\\ 0,0118(5)\\ 0,0118(5)\\ 0,0135(4)\\ 0,0135(4)\\ 0,0135(4)\\ 0,0229(3)\\ 0,022(4)\\ 0,035(4)\\ 0,022(3)\\ 0,014(2)\\ 0,014(2)\\ 0,013(2)\\ 0,013(2)\\ 0,013(2)\\ 0,015(2)\\ 0,015(2)\\ 0,015(2)\\ 0,015(2)\\ 0,015(2)\\ 0,015(2)\\ 0,015(2)\\ 0,015(2)\\ 0,015(2)\\ 0,012(2)\\ 0,022(10)\\ 0,022(2)\\ $	0,0031(1) 0,0012(3) 0,0101(4) 0,0020(2) 0,0020(2) 0,002(3) -0,003(3) -0,002(4) 0,005(2) 0,005(2) 0,005(2) 0,003(1) 0,003(2) 0,003(2) 0,003(2) 0,003(2) 0,003(2) 0,003(2) 0,003(2) 0,003(2) 0,003(2) 0,003(2)	-0,0111(1) -0,005(3) -0,0027(4) -0,0082(3) -0,0104(5) -0,008(2) -0,009(3) -0,021(3) -0,035(3) -0,035(3) -0,035(3) -0,0065(2) -0,006(2) -0,008(2) -0,007(2) -	-0,0071(1 -0,0018(3 -0,0005(4 -0,0005(2 -0,0065(3) -0,0012(2) -0,006(5) -0,009(3) -0,009(3) -0,009(3) -0,009(3) -0,001(2) -0,005(2) -0,005(2) -0,005(2) -0,005(2) -0,009(2) -0,005(2) -0,005(2) -0,005(2) -0,005(2) -0,005(2) -0,005(2) -0,005(2) -0,002(2) -0,0
" Posi	tion nur zu	1/2 besetzt							-
Pb2Cu3	02(NO3)2(Se	0 ₃) ₂							
Pb(1) Pb(2) Cu(1) Cu(2) O(1) O(2) Se(1) O(11) O(12) Se(2) O(21) O(21) On(11) On(12) N(2) On(21)	0,2491(6) 0,222(4) 0,222(4) 0,232(3) 0,183 0	0,4634(1) 0,7660(1) 0,6141(3) 0,5630(2) 0,770(2) 0,457(2) 0,643(2) 0,643(2) 0,643(2) 0,643(2) 0,643(2) 0,643(2) 0,643(2) 0,643(2) 0,643(2) 0,643(2) 0,103(2) 0,103(2) 0,103(2) 0,103(2) 0,001(2) 0,001(2)	0,0000 [±] 0,2978(1) 0,1455(4) 0,1455(4) 0,165(1) 0,165(1) 0,052(2) 0,052(2) 0,052(2) 0,052(2) 0,055(3) 0,245(2) 0,245(2) 0,245(2) 0,245(2) 0,245(2) 0,245(2) 0,245(2) 0,245(2) 0,245(2) 0,245(2) 0,245(2) 0,277(1)	0,038(1) 0,035(1) 0,041(2) 0,024(1) 0,033(17) 0,013(13) 0,029(3) 0,050(13) 0,050(12) 0,050(12) 0,018(9) Uree =	0,025(1) 0,021(1) 0,022(1) 0,022(1) 0,011(9) 0,047(14) 0,023(2) 0,017(8) 0,012(10) 0,012(10) 0,018(2) 0,060(18) 0,042(9) 0,060(6)	0,020(1) 0,019(1) 0,0224(2) 0,047(21) 0,047(21) 0,018(2) 0,037(18) 0,062(17) 0,018(2) 0,018(2) 0,016(13) 0,010(8)	0 0,000(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0,000(1) 0,000(1) -0,002(2) 0,012(1) 0,012(10) -0,002(1) 0,013(13) -0,005(9) -0,001(1) 0,004(14) 0,011(7)
0, (22)	0,183	0,130(2)	-0.075(1)	"iso	.,				

* invariant (Definition des Ursprungs der Elementarzelle)

sowie die Werte für die anomale Dispersion wurden [2] entnommen und die sekundäre isotrope Extinktion entsprechend [3] berücksichtigt. Die letztlich erzielten *R*-Werte sind in Tab. 1 aufgenommen. Die Strukturparameter für die beiden Verbindungen sind in Tab. 2 angegeben.

Im PbCu₃(OH)(NO₃)(SeO₃)₃· $\frac{1}{2}$ H₂O kann die Punktlage des O_w-Atoms maximal zur Hälfte besetzt sein, da sich sonst ein interatomarer Abstand O_w-O_w = 1.42 Å ergäbe. Ob das H₂O-Molekül statistisch verteilt ist, oder ob durch Ordnung eine Symmetrieerniedrigung nach P1 auftritt bzw. ob das Volumen der Elementarzelle zu vervielfachen ist, konnte bei der hier vorliegenden Genauigkeit der Strukturverfeinerung nicht entschieden werden (Langzeit-Filmaufnahmen ---Weissenberg-Filmmethode --- wurden angefertigt).

Für $Pb_2Cu_3O_2(NO_3)_2(SeO_3)_2$ war auf Grund der schlechten Kristallqualität nur die Bestimmung des Strukturtyps möglich. Für die Nitratgruppen wurde hier die Symmetrie $\overline{6}2$ m angenommen und die N—O-Abstände von 1.245 Å [4, 5] nicht verfeinert. Für die Atome dieser Nitratgruppen wurde weiters jeweils nur ein gemeinsamer isotroper Temperaturparameter bei der Verfeinerung zugelassen.

Diskussion

Eine Zusammenstellung der wichtigsten interatomaren Abstände für die beiden hier vorgestellten Blei(II)-Kupfer(II)-Nitrat-Selenite ist in Tab. 3 gegeben. Beide Verbindungen zeigen jeweils ähnliche Koordinationen

Tabelle 3. Wichtige interatomare Abstände (in Å) der beiden Blei(II)-Kupfer(II)-Nitrat-Selenite

PbCu ₃ (0H)(NO ₃)(SeO ₃) ₃ .1/2H ₂ O							
Pb=0(11)=2,475(5) Pb=0(11)=2,561(5) Pb=0(22)=2,592(4) Pb=0(33)=2,660(5)	Cu(1)-O(32)=1,949(4) 2× Cu(1)-O(12)=2,078(4) 2× Cu(1)-O(23)=2,316(4) 2×	Cu(2)-O(33)=1,933(4) 2 Cu(2)-O(13)=1,974(5) 2 $Cu(2)-O_n(2)=2,582(9)$ 2					
Pb-O _b = 2,674(18) 1/2× Pb-O(13) = 2,681(5) Pb-O(21) = 2,685(5) Pb-O _n (3) = 2,994(8) Pb-O ₂ = 3,178(18) 1/2×	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Pb-O(31)=3,302(5) O _h O(32)=2,706(6) O _m O(33)=2,93(2)	Se(1)-0(11)=1,689(5) Se(1)-0(13)=1,709(5) Se(1)-0(12)=1,713(4)	Se(2)-0(23)=1,700(4) Se(2)-0(21)=1,703(5) Se(2)-0(22)=1,709(5)					
$0_{w}^{\circ} \dots 0_{n}(2) = 2,96(2)$ $0(33) \dots 0_{w} \dots 0_{n}(2) =$ $= 115,9(5)^{\circ}$	Se(3)-0(32)=1,688(5) Se(3)-0(32)=1,692(4) Se(3)-0(31)=1,740(4)	$N = O_n(1) = 1, 20(1)$ $N = O_n(2) = 1, 24(1)$ $N = O_n(3) = 1, 26(1)$					
Pb2Cu302(N03)2(Se03)2							
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{l} Cu(1)-O(11)=1,86(3)\\ Cu(1)-O(21)=1,94(3)\\ Cu(1)-O(1)=1,97(2)\\ Cu(1)-O(2)=2,00(3)\\ Cu(2)-O(1)=1,95(3)\\ Cu(2)-O(2)=1,94(2)\\ Cu(2)-O(2)=1,97(2)\\ Cu(2)-O(2)=1,97(2$					
sett)=0(11)=1,71(2)	Se(2)-0(22)=1,72(2) 2×	00(2)=0((2)=2,00(5)					

für die Atome Cu bzw. Se, jedoch sehr unterschiedliche für die verschiedenen Pb-Atome. In den trigonal pyramidal gebauten Selenit-Gruppen liegt das Se-Atom generell jeweils an der Pyramidenspitze, wie es der allgemeinen kristallchemischen Erfahrung entspricht [6]. Die mittleren Se—O-Abstände variieren von 1.68 Å bis 1.71 Å, die einzelnen O—Se—O- Bindungswinkel von 95.9° bis 105.5°. Ein weiteres generell vorliegendes Bauelement sind die nur über schwache Bindungen mit den übrigen Koordinationspolyedern verknüpften Nitratgruppen.

PbCu₃(OH)(NO₃)(SeO₃)₃ · $\frac{1}{2}$ H₂O

Die vier Cu-Atome sind jeweils "planar quadratisch" von vier nächsten O-Atom-Nachbarn umgeben, wobei die mittleren Cu-O-Abstände zwischen 1.954 Å und 2.014 Å schwanken. Die O-Cu-O-Winkel betragen zwischen benachbart gelegenen O-Atomen 79.5° bis 97.7°. Zwischen diametral gelegenen O-Atomen fällt der Winkel O(21)-Cu(4)-O(31) mit nur 161.2° auf; alle anderen dieser Winkel sind größer als 174.5°. Die Koordinationen der Atome Cu(3) und Cu(4) werden durch je einen, die der Atome Cu(1) und Cu(2) werden durch je zwei weitere Nachbarn (mit Cu-O zwischen 2.32 Å und 2.58 Å) ergänzt. Die Koordinationspolveder lassen sich als tetragonale Pyramiden bzw. als stark verzerrte Oktaeder beschreiben. Solche Koordinationen sind für formal zweiwertige Cu-Atome in anorganischen Kristallstrukturen durchaus häufig anzutreffen [7–9]. Betrachtet man nur die Verknüpfung der CuO₄-Quadrate, so liegen Ketten parallel [101] vor, wobei jeweils zwei Cu(4)O₄-Quadrate eine gemeinsame O-O-Kante haben. Über die nächst weiteren Nachbarn der Cu-Koordinationspolyeder werden diese Ketten zu Schichten parallel (010) verbunden. Das Cu(2)-Atom ist mit diesem Verband nicht unmittelbar über Cu-O-Bindungen verknüpft. Zusammen mit den SeO₃-Gruppen entsteht ein Gerüstverband, der in Abb. 1 dargestellt ist.

Das Pb-Atom ist unregelmäßig von neun Sauerstoffatomen umgeben, wobei nur solche O-Atome berücksichtigt wurden, die kürzere Pb--O-Abstände aufweisen, als der kürzeste Blei-Kation-Abstand [Pb--Se (1) = 3.36 Å]. Allerdings liegen sechs bzw. sieben Pb--O-Bindungslängen (da die O_w-Position maximal zur Hälfte besetzt ist) unter 2.70 Å und die nächst längere weist bereits einen Abstand von 2.99 Å auf.

Die Nitratgruppe ist nur über zwei der längeren Cu—O-Bindungen (2.42 Å und 2.58 Å) sowie offensichtlich über eine der Wasserstoffbrückenbindungen mit dem Strukturgerüst verknüpft. Die O...O-Abstände der postulierten Wasserstoffbrückenbindungen sind in Tab. 3 angegeben.

$Pb_2Cu_3O_2(NO_3)_2(SeO_3)_2$

Die beiden kristallographisch verschiedenen Cu-Atome weisen etwa planar quadratische Koordination mit mittleren Cu-O-Abständen von 1.94 Å und 1.96 Å auf. Die O-Cu-O-Winkel zwischen benachbart gelegenen O-Atomen sind 84.6° bis 95.7°, zwischen diametral gelegenen O-Atomen sind die O-Cu-O-Winkel größer als 177.2°. In den Kupfer-Koordinationen treten unter 3.00 Å keine weiteren Nachbarn auf. Die

Abb. 1. Die Kristallstruktur von PbCu₃(OH)(NO₃)(SeO₃)₃· ½H₂O in Projektion parallel [100] auf (100)

Verknüpfung der CuO₄-Quadrate erfolgt über Ecken zu $^2_{\infty}$ [Cu₃O₈]-Schichten, die parallel (001) liegen. Die drei O-Atome jeder der SeO₃-Gruppen liegen innerhalb einer dieser Schichten, die Se-Atome sind dabei der Schicht abgewandt (vgl. Abb. 2).

Die beiden kristallographisch verschiedenen Pb-Atome haben jeweils vier Pb—O-Bindungen, die kürzer sind als 2.52 Å. Alle vier O-Atome jedes Pb-Atoms liegen innerhalb einer Schicht. so daß ein ${}_{0}^{2}$ [Pb₂Cu₃O₂(SeO₃)₂]-Verband gebildet wird. Die Pb-Atome werden zusätzlich von je sechs weiteren Sauerstoffatomen der Nitratgruppen umgeben. Diese dürfen trotz der langen Pb-O_n-Abstände von 2.98 Å bis 3.16 Å nicht vernachlässigt werden: Benachbart gelegene ²₂ [Pb₂Cu₃O₂(SeO₃)₂]-Schichten werden nur über diese Bindungen zu den Nitratgruppen verknüpft. Damit ist die gute Spaltbarkeit sowie die häufig beobachtete Verwachsung der Kristalle parallel (001) zu erklären.

Bemerkenswert sind die Atome O(1) und O(2), die nur von je drei

1104

PbCu₃(OH)(NO₃)(SeO₃)₃ · ¹/₂H₂O

Abb. 2. Die Kristallstruktur von Pb₂Cu₃O₂(NO₃)₂(SeO₃)₂ in Projektion auf (100)

Cu(II)-Atomen und einem Pb(II)-Atom tetraedrisch koordiniert werden. Die Pb—O-Abstände sind dabei die kürzesten, die in diesen beiden Verbindungen gefunden wurden. Die Winkel Cu—O—Cu betragen für beide Atome übereinstimmend etwa 98° (1 ×) und 119° (2 ×), die Cu— O—Pb-Winkel 104° (1 ×) und 106° (2 ×). Für ähnliche Koordinationen von Oxo-Sauerstoffatomen, allerdings gegenüber vier Cu-Atomen, vgl. [10].

 $Pb_2Cu_3O_2(NO_3)_2(SeO_3)_2$ kristallisiert in Raumgruppe Cmc_{2_1} . Es sei jedoch darauf hingewiesen, daß die ${}^2_{\infty}$ [Pb₂Cu₃O₂(SeO₃)₂]-Schichten selbst praktisch zentrosymmetrisch sind, wobei ein Symmetriezentrum mit dem Schwerpunkt des Atoms Cu(1) und praktisch auch mit jenem des Atoms Cu(2) zusammenfällt. Durch die hier beobachtete Stapelung dieser Schichten wird die Zentrosymmetrie für die Gesamtstruktur verletzt. Stapelvarianten, die eine zentrosymmetrische Raumgruppe zulassen, sind jedoch geometrisch durchaus möglich.

1105

Dank

Herrn Prof. Dr. J. Zemann danke ich für sein stetes Interesse am Fortgang dieser Arbeit. Die Synthesen wurden aus Mitteln der Hochschuljubiläumsstiftung der Stadt Wien unterstützt.

Literatur

- [1] Sheldrick GM (1976) SHELX-76 Programme für die Strukturbestimmung. Univ Cambridge, England
- [2] International Tables for X-ray Crystallography (1974), Vol IV. The Kynoch Press, Birmingham
- [3] Zachariasen WH (1967) Acta Cryst 23: 558
- [4] Leclaire A (1979) J Solid State Chem 28: 235
- [5] Jarosch D, Zemann J (1983) Monatsh Chem 114: 267
- [6] Fischer R, Zemann J (1974) Handbook of geochemistry, II-3, 34/A. Springer, Berlin Heidelberg New York
- [7] Zemann J (1961) Fortschr Miner 39: 59
- [8] Zemann J (1972) Handbook of geochemistry, II-3, 29/A. Springer, Berlin Heidelberg New York
- [9] Wells AF (1984) Structural inorganic chemistry, 5th edn. Clarendon Press, Oxford
- [10] Effenberger H (1985) Monatsh Chem 116: 927